
The Fiat Lux Journal 2024

DYNAMIC CONVOLUTIONAL NETWORKS
FOR 3-DIMENSIONAL RECONSTRUCTION

Dongchen Han

Phillips Academy Andover

January 22, 2024

Abstract

Modern convolutional neural networks (CNNs)
require applying duplicate and redundant oper-
ations (such as alignment and matching) on dif-
ferent regions and pixels when processing three-
dimensional (3D) reconstruction tasks. But dif-
ferent image areas and pixels are certainly not
equally valuable for 3D reconstruction. In or-
der to solve this problem, we propose a dynamic
CNN structure for 3D reconstruction, which can
dynamically modify the network based on the
estimated impact of different regions and pix-
els on the 3D reconstruction task. The small
gating branch learns which important areas or
pixels need to be evaluated. The discrete gating
decisions are trained with the Gumbel-Softmax
trick, combined with a series of spatial and scale
criteria. Our experiments on ShapeNet dataset
shows that our method has higher accuracy than
existing methods due to the better focus on
important regions. Moreover, with an efficient
CUDA implementation, our method achieves an
improved inference speed on the most famous
3D reconstruction model Mesh R-CNN.

Keywords 3D Reconstruction, Dynamic
Convolutional Neural Network

1 Introduction

With the development of virtual reality and deep
learning, 3D reconstruction technology has been
widely studied. It is worth noting that more
and more preliminary research works began to
use convolutional neural networks (CNNs) to re-
construct 3D shapes based on input RGB im-
ages. Although some progress has been made,
these methods have a common significant short-
coming. In these methods, the same and re-
dundant matching and alignment operations are
performed for all regions and pixels. Obviously,

these violent matching and alignment operations
are unreasonable for 3D reconstruction tasks for
three reasons. First, performing the same oper-
ation on different regions and pixels makes the
existing 3D reconstruction system unable to ef-
fectively use different 3D reconstruction granu-
larities in different image regions according to
the characteristics of the object. Second, uni-
form matching and alignment operations also
increase parameter redundancy and limit the
performance of existing 3D reconstruction mod-
els on different scenes and objects in the nat-
ural world. Finally, redundant parameters can
also significantly increase the training and test
time. To solve these problems, we adopt an
improved 3D reconstruction sub-network with a
dynamic residual module, which can be trained
end-to-end without additional space and scale
constraints. Compared with the conventional
CNN that performs the same convolution op-
eration on all regions and pixels, our dynamic
CNN can perform more convolution operations
on image regions and pixels with more details.
We borrowed design ideas of dynamic convolu-
tion [1] and residual convolution networks [2].
A dynamic residual module consists of several
dynamic residual blocks. In every block, a small
gating unit is used to select the regions that need
to be focused on. The gating units are designed
with the Gumbel-Softmax [3] trick to enable
end-to-end training. Those decisions progress
can extract features from important regions in
the image, which enables the network to uti-
lize higher-level information and process the re-
gions of interest (ROIs) only. In addition, to
improve the execution efficiency of the existing
3D reconstruction model, we implement the dy-
namic 3D reconstruction sub-network based on
the CUDA platform of NVIDIA graphics cards.
The core advantage of our approach is that we
reduce as many CUDA modifications as possi-

1



Figure 1: The overall structure of Mesh R-CNN.
The voxel branch generates the coarse shape of
each detected object. In the mesh refinement
branch, several refinement stages can improve
the details. We optimize the 3D reconstruction
sub-network (i.e., mesh refinement branch) of
Mesh R-CNN with the dynamic residual mod-
ule.

ble. On the other hand, we optimized the Ten-
sor data structure in memory. Compared to con-
ventional CNNs, our method can perform convo-
lution operations more accurately and sparsely.
The main contributions of our paper are listed
as follows: • We propose a dynamic 3D recon-
struction sub-network to perform more precise
and detailed convolution operations on image re-
gions and pixels that need to be focused on in 3D
reconstruction. We adopt the design idea of the
Gumbel-Softmax trick to construct a dynamic
residual module with gating masks. • The dy-
namic residual module can be integrated into ex-
isting 3D reconstruction networks based on con-
volutional layers. In the experiment, we com-
bined our method into the most advanced Mesh
R-CNN method. The results show that the pro-
posed dynamic residual module can effectively
improve the accuracy of Mesh R-CNN and accel-
erate the training and testing time of the entire
network. • We implement the residual module
on GPU with CUDA. It can not only theoreti-
cally reduce the number of floating-point opera-
tions but also practically accelerate the training
and testing of Mesh R-CNN.

2 Methods

2.1 Tools

In this paper, we propose a dynamic 3D recon-
struction sub-network based on dynamic resid-
ual modules, which can perform precise and de-
tailed convolution in neural networks for 3D re-
construction. To show the effectiveness of the
proposed method, we integrate it into the Mesh
R-CNN system [26]. Figure 1 shows the system
overview of Mesh R-CNN, where a 3D recon-
struction sub-network is adopted in the mesh re-

Figure 2: Our improved 3D reconstruction sub-
network. Specifically, it adds multiple dynamic
residual blocks to ROI Align to learn the target
object’s three-dimensional shape. Here we only
list three dynamic residual blocks due to lim-
ited space. We use a mask unit and several spa-
tial convolutions to learn the three-dimensional
shape for each block.

finement branch. The original Mesh R-CNN has
a common significant shortcoming, especially
when facing redundant matching and alignment
operations performed for all regions. The vio-
lent matching and alignment operations are in-
efficient in 3D reconstruction tasks. Perform-
ing redundant operations across different regions
will be ineffective for applying different granu-
larities on the final reconstructed object. This
violent alignment operation will also increase pa-
rameter redundancy, causing difficulty process-
ing other natural world scenes and increasing
training time. To solve this problem, we opti-
mize the 3D reconstruction sub-network of Mesh
R-CNN with a dynamic residual module. With
the dynamic processes in different regions, it can
perform convolution operations with more de-
tails. In this section, we describe the design
of the dynamic 3D reconstruction sub-network,
which is based on dynamic residual modules.

2.2 Related Work

Our research aims to optimize the convolu-
tion operation in the existing 3D reconstruc-
tion model. Recently, more and more methods
have begun to use CNNs for single-image 3D
reconstruction. In general, these methods can
be divided into three categories as follows. (1)
Some approaches can predict the orientation of
the shape [4, 5], and others can construct a 3D
pose model based on the existing shape [6, 7, 8];
(2) Other methods predict 3D shapes based on
point clouds [9, 10], patches [11, 12], or geomet-
ric primitives [13, 14, 15]; (3) Others use CNNs
to learn distance functions [16]. Although these
methods can perform 3D shape reconstruction
well, they rely too much on data preprocessing
and data post-processing steps, and these meth-
ods generally lack scalability. In addition, there

2



are some studies that mainly focus on multi-view
reconstruction. Various methods are designed
for it, including classical binocular stereo [17,
18], shape priors [19, 20, 21, 22], and modern
learning techniques [23, 24, 25]. Our improved
3D reconstruction sub-network is shown in Fig-
ure 2. Specifically, our method adds multiple dy-
namic residual blocks to ROI Align to learn the
target object’s three-dimensional shape. Here
we only list three dynamic residual blocks due
to limited space. In each block, we use a mask
unit and several spatial convolution layers to
learn the three-dimensional shape. The spa-
tial positions to be processed are indicated by
the pixel-wise masks. For every dynamic resid-
ual block, we use the Gumbel-Softmax trick to
enable the end-to-end training of discrete de-
cisions, which can achieve better performance
than REINFORCE [27] with less complexity. In
the following, we will introduce in detail the dy-
namic residual block. Specifically, the structure
of the dynamic residual block is shown in Figure
4. We denote the input of a block b (i.e., Cubi-
fied Mesh) as Xb ∈ Rcb×wb×hb and its output as
Xb+1 ∈ Rcb+1×wb+1×hb+1 . The dynamic residual
block is formulated as:

Xb+1 = r(F (Xb) +Xb)

where F is the dynamic function and r is the ac-
tivation function. We make the values of F con-
ditional on Xb by adopting a mask unit M(Xb),
which outputs soft gating decisions. Further-
more, we use the Gumbel-Softmax unit G to
turn soft decisions Mb ∈ Rwb+1×hb+1 into hard
decisions Gb ∈ Rwb+1×hb+1 , indicating which po-
sition in the residual block should be evaluated.
The Gumbel-Softmax unit can be described by:

Gb = G(M(Xb)).

Thus, the dynamic function F can be defined as:

F (Xb) = f(Xb) ◦Gb

where f is the spatial convolution function, which
typically consists of two or three convolution lay-
ers with batch normalization (BN) [28]. The op-
eration ◦ is the element-wise multiplication over
the spatial dimensions broadcasted to all chan-
nels. Thus, a dynamic residual block can be rep-
resented by:

Xb+1 = r(f(Xb) ◦Gb +Xb)

Figure 3 presents an example of the dynamic
function F on a 6 × 5 × 1 feature map. The
Gumbel-Softmax unit G selects the entries to be
passed to the next dynamic residual block. The
non-zero entries in F (Xb) are significantly less
than F (Xb), which inspires us to accelerate the
computation utilizing the sparsity of dynamic
residual blocks.

Figure 3: An example of the dynamic function
F (Xb) = f(Xb)◦Gb The sparsity of F (Xb is ob-
viously higher than F (Xb, which can be utilized
to reduce the amount of computation.

Figure 4: The execution flow of a mask unit with
the Gumbel-Softmax trick. Firstly, a floating-
point mask is generated. Then the soft deci-
sions are converted into hard decisions by the
Gumbel-Softmax trick, which enables the back-
propagation for end-to-end learning.

2.3 Efficient inference implemen-
tation

Merely masking spatial locations in a convolu-
tional block, as described above, does not lead
to any speedup. During inference, our method
needs evaluation on the active spatial positions
only, indicated by Gb. Efficiently executing
sparse operations is a challenging task. The
overlap of convolutional kernels causes a sin-
gle tensor element to be accessed several times,
requiring advanced caching strategies. For in-
stance, fast implementations of standard 3 × 3
convolutions use the Winograd algorithm [29],
which processes image patches of typically 4
× 4 pixels. Conditionally executing individual
pixels is not trivial in this case, and we leave
the possibility to conditionally execute individ-
ual Winograd patches for future work. We pro-
pose a method to efficiently execute spatially
sparse convolutions with minimal changes to ex-
isting operators. Our method executes individ-
ual operations conditionally by copying selected
elements to an intermediate, dense tensor. For
pointwise convolutions and activation functions,
we can apply corresponding implementations on
the intermediate tensor. Finally, the processed
result is copied back to its original position.

3



3 Discussion

3.1 Dataset

ShapeNet [30] is a widely-used benchmark pro-
viding various 3D shapes, which are represented
as textured CAD models and organized into se-
mantic categories following WordNet [31]. We
use a subset of ShapeNetCore.v1 to train and
evaluate our method, like [26]. The meshes are
rendered from at most 24 randomly chosen view-
points. The RGB images are of size 137 ×
137. The training and testing sets consist of
35,011 models (840,189 images) and 8,757 mod-
els (210,051 images), respectively. To evaluate
the model, we input a single RGB image of a ren-
dered ShapeNet model on a blank background
and obtain the output, which is a 3D mesh of
the object. The neural network is trained with
pairs of images and meshes.

4 Discussion

4.1 Evaluation

We adopt evaluation metrics used in recent work
[32, 33, 34, 26]. We compute Chamfer distance
and F1τ at various distance thresholds by sam-
pling 10k points uniformly from the surface of
predicted and ground-truth meshes. F1τ is the
harmonic mean of the precision and recall at tau.
For Chamfer distance, lower is better. For F1τ

, higher is better.

4.2 Analysis of Results

The results of our comparison with other state-
of-the-art methods are shown in Table 1. For
the sake of fairness, we comprehensively evalu-
ated three evaluation measures. All the experi-
mental results in the table are from the original
paper. Because some methods do not share their
source code, we cannot reproduce and make
complete comparisons. In general, our method
has achieved better results than other methods.

In careful comparison with the Mesh R-CNN
method, our method has achieved better perfor-
mance. In the experiment, the performance of
our method will change with the number of dy-
namic residual blocks. Here we only list the best
result of our method, which uses three dynamic
residual blocks. In addition, we also compared
the impact of our method on the training time
and testing time of the original Mesh R-CNN
method. The experimental results are shown in
Table 2. Our method can optimize the testing
and training time of Mesh R-CNN. Because of
limited resources, we only test up to 6 residual
modules. Our method achieves the best perfor-
mance with three residual modules.

4.3 Examples of Reconstruction
Results

We more intuitively compare our method and
the original Mesh R-CNN on 3D reconstruction.
We show part of the 3D reconstruction results
in Figure 5. The last two columns of each re-
sult are the 3D triangle meshes generated by our
method and Mesh R-CNN. From Figure 5, we
can see that our method has achieved better re-
sults. Compared with the Mesh R-CNN method,
our method can pay more attention to the de-
tailed information in the 3D reconstruction de-
tails. Moreover, get a more accurate expression
of the 3D triangle.

5 Conclusion

In our research project, we carefully survey the
previous works on 3D construction. The state-
of-the-art 3D construction models have similar
problems: conventional CNNs can only operate
the same convolution operations on all pixels
of images and ignoring the detail of 3D shapes.
Based on this observation, we propose a dynamic

Figure 5: We more intuitively compare our
method and the original Mesh R-CNN on 3D
reconstruction. The last two columns of each
result are the 3D triangle meshes generated by
our method and Mesh R-CNN.

4



3D reconstruction sub-network to improve the
original frameworks of Mesh R-CNN. In the pa-
per, we briefly illustrate our proposed method
and analyze the experimental results. The pro-
posed method outperforms Mesh R-CNN by a
large margin with lower training and testing
time.

References
[1] Thomas Verelst and Tinne Tuytelaars.
Dynamic convolutions: Exploiting spatial
sparsity for faster inference. In CVPR, pages
2317–2326, 2020.
[2] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016.
[3] Eric Jang, Shixiang Gu, and Ben
Poole. Categorical Reparameterization with
Gumbel-Softmax. 2016.
[4] David F. Fouhey, Abhinav Gupta, and
Martial Hebert. Data-driven 3D primitives
for single image understanding. In ICCV,
2013.
[5] Derek Hoiem, Alexei A. Efros, and Mar-
tial Hebert. Geometric context from a single
image. In ICCV, 2005.
[6] Abhijit Kundu, Yin Li, and James M.
Rehg. 3D-RCNN: Instance-level 3d object
reconstruction via render-andcompare. In
CVPR, 2018.
[7] Georgios Pavlakos, Xiaowei Zhou, Aaron
Chan, Konstantinos G. Derpanis, and Kostas
Daniilidis. 6-dof object pose from semantic
keypoints. In ICRA, 2017.
[8] Shubham Tulsiani and Jitendra Malik.
Viewpoints and keypoints. In CVPR, 2015.
[9] Haoqiang Fan, Hao Su, and Leonidas J.
Guibas. A point set generation network for
3d object reconstruction from a single image.
In CVPR, 2017.
[10] Chen-Hsuan Lin, Chen Kong, and Simon
Lucey. Learning efficient point cloud gener-
ation for dense 3d object reconstruction. In
AAAI, 2018.
[11] Thibault Groueix, Matthew Fisher,
Vladimir G Kim, Bryan C Russell, and
Mathieu Aubry. A papier-mâché approach
to learning 3d surface generation. In CVPR,
2018.
[12] Peng-Shuai Wang, Chun-Yu Sun, Yang
Liu, and Xin Tong. Adaptive O-CNN:
a patch-based deep representation of 3d
shapes. In SIGGRAPH Asia, 2018.
[13] Sanja Fidler, Sven Dickinson, and Raquel
Urtasun. 3d object detection and viewpoint
estimation with a deformable 3d cuboid
model. In NeurIPS, 2012.

[14] Yonglong Tian, Andrew Luo, Xingyuan
Sun, Kevin Ellis, William T. Freeman, Joshua
B. Tenenbaum, and Jiajun Wu. Learning
to infer and execute 3d shape programs. In
ICLR, 2019.
[15] Shubham Tulsiani, Hao Su, Leonidas J.
Guibas, Alexei A. Efros, and Jitendra Malik.
Learning shape abstractions by assembling
volumetric primitives. In CVPR, 2017.
[16] Lars Mescheder, Michael Oechsle,
Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. Occupancy networks: Learn-
ing 3d reconstruction in function space. In
CVPR, 2019.
[17] Richard Hartley and Andrew Zisserman.
Multiple view geometry in computer vision.
Cambridge university press, 2003.
[18] Daniel Scharstein and Richard Szeliski. A
taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. IJCV,
2002.
[19] Sid Yingze Bao, Manmohan Chandraker,
Yuanqing Lin, and Silvio Savarese. Dense
object reconstruction with semantic priors.
In CVPR, 2013.
[20] Volker Blanz and Thomas Vetter. A
morphable model for the synthesis of 3d
faces. In SIGGRAPH, 1999.
[21] Amaury Dame, Victor A. Prisacariu,
Carl Y. Ren, and Ian Reid. Dense reconstruc-
tion using 3d object shape priors. In CVPR,
2013. [22] Christian Häne, Nikolay Savinov,
and Marc Pollefeys. Class specific 3d object
shape priors using surface normals. In CVPR,
2014.
[23] Abhishek Kar, Christian Häne, and
Jitendra Malik. Learning a multi-view stereo
machine. In NeurIPS, 2017.
[24] Alex Kendall, Hayk Martirosyan,
Saumitro Dasgupta, Peter Henry, Ryan
Kennedy, Abraham Bachrach, and Adam
Bry. End-to-end learning of geometry and
context for deep stereo regression. In ICCV,
2017.
[25] Tanner Schmidt, Richard Newcombe, and
Dieter Fox. Self-supervised visual descriptor
learning for dense correspondence. In IEEE
Robotics and Automation Letters, 2017.
[26] Georgia Gkioxari, Jitendra Malik, and
Justin Johnson. Mesh R-CNN. In ICCV,
2019.
[27] Ronald J Williams. Simple statistical
gradient-following algorithms for connection-
ist reinforcement learning. Machine learning,
8(3-4):229–256, 1992.
[28] Sergey Ioffe and Christian Szegedy. Batch
normalization: Accelerating deep network
training by reducing internal covariate shift.

5



2015.
[29] Andrew Lavin and Scott Gray. Fast
algorithms for convolutional neural networks.
In CVPR, pages 4013–4021, 2016.
[30] Angel X. Chang, Thomas A. Funkhouser,
Leonidas J. Guibas, Pat Hanrahan, Qi-Xing
Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, Jianxiong Xiao,
Li Yi, and Fisher Yu. Shapenet: An infor-
mationrich 3d model repository. In CoRR
1512.03012, 2015.
[31] George A. Miller. WordNet: A Lexical
Database for English. In Commun. ACM,
1995.
[32] Edward Smith, Scott Fujimoto, and
David Meger. Multi-view silhouette and
depth decomposition for high resolution 3d
object representation. In NeurIPS, 2018.
[33] Edward J. Smith, Scott Fujimoto, Adri-
ana Romero, and David Meger. GEOMetrics:
Exploiting geometric structure for graph-
encoded objects. In ICML, 2019.
[34] Nanyang Wang, Yinda Zhang, Zhuwen
Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang.
Pixel2Mesh: Generating 3D mesh models
from single RGB images. In ECCV, 2018.
[35] Hiroharu Kato, Yoshitaka Ushiku, and
Tatsuya Harada. Neural 3D mesh renderer.
In CVPR, 2018.
[36] Christopher B. Choy, Danfei Xu, JunY-
oung Gwak, Kevin Chen, and Silvio Savarese.
3D-R2N2: A unified approach for single
and multi-view 3d object reconstruction. In
ECCV, 2016.

6


	Introduction
	Methods
	Tools
	Related Work
	Efficient inference implementation

	Discussion
	Dataset

	Discussion
	Evaluation
	Analysis of Results
	Examples of Reconstruction Results

	Conclusion

